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I. INTRODUCTION 

The most general problem in the theory of solutions may be formulated 
as follows: Given a homogeneous mixture of several substances of known 
chemical composition, what are the properties of the solution as functions 
of temperature, pressure, concentration, and parameters describing external 
forces? The phrase “of known composition” implies, of course, tha t  
parameters characteristic of the various components will appear in the final 
result. In principle, these should be reducible to atomic and molecular 
constants. It is, in general, possible to express any property as a function 
of any variable by means of empirical equations based on accurate experi- 
mental data, but, while such a result serves to correlate measurements on 
various phenomena, it may not be considered as a solution of the problem. 
A satisfactory solution of the problem will be one in which all constants 
have an assignable physical significance (which may perhaps be fictitious; 
we must, however, require a t  least a one to one correspondence between 
model and fact), and in which the mathematical form of the functions is 
predicted on the basis of reasonable theoretical arguments. 

It is the purpose of the present paper to consider a very restricted phase 
of the general problem,-the properties of dilute solutions of binary electro- 
lytes. Unsymmetrical electrolytes are excluded for the sake of mathe- 
matical simplicity. Furthermore, those electrolytes which form true 
neutral molecules by electron rearrangement of the constituent ions after 
contact are excluded from discussion, because so little is known of their 
properties. (It is true that weak acids, for example, have been extensively 
investigated in aqueous solution, but these represent too special a case to 
permit generalization.) 

Among the various measurable properties of electrolytic solutions, the 
conductance is probably the one which can be measured with the highest 
precision over the widest range of all of the physical variables. For 

1 This paper was read a t  the Ninetieth Meeting of the American Chemical Society, 
a t  San Francisco, August 20, 1935, on the occasion of the presentation of the American 
Chemical Society Award in Pure Chemistry for 1935. 
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practical purposes, therefore, we shall base most of our examples and 
arguments on conductance data. One fundamental difference between 
conductance and thermodynamic properties should perhaps be empha- 
sized; the former represents an  irreversible process, while the latter are 
(or at least, should be) measured by means of reversible processes. A 
satisfactory theory of electrolytes must be able to account for both types; 
unfortunately, very few data on thermodynamic properties of electrolytes 
in non-aqueous solvents are available a t  present for comparison with 
theory, and again the abundance of data on aqueous solutions has served 
primarily to obscure the general problem, inasmuch as conclusions based 
on a special limiting case (solvent of high dielectric constant) cannot be 
extrapolated into regions where entirely different microscopic phenomena 
appear. 

On the basis of well-known general principles, it is possible to derive all 
of the properties of a solution from its free energy and this, in turn, by 
means of the phase integral, from the total energy which is the sum of the 
individual energies of the solute particles. These energies depend, finally, 
on the relative positions of the solute particles, so that the problem resolves 
itself fundamentally into the question of the relative location of the ions, 
assuming, of course, that  we know the laws of force as a function of distance. 
The actual solution of the problem directly through the phase integral2 
involves a number of mathematical difficulties, most of which are yet to be 
overcome. It is possible, however, to obtain an  approximate solution of 
the problem by considering the distribution of the ions in an electrolytic 
solution, and then treating various ions in different ways, according to the 
relative magnitudes of the terms in the total energy of each ion. This 
approximate treatment will be the subject of the present paper; the distri- 
bution of ions in solution will be investigated and it will be shown that i t  is 
possible to split interionic effects into long and short range interactions. 
The former may be treated by the time average method of Debye and 
Huckel (5)  and the latter by the formal methods of dissociation theory. 
Based on these results, equations will be derived which quantitatively 
reproduce experimental data on conductance for dilute solutions of ordinary 
electrolytes in all solvents so far investigated. Various limitations to the 
treatment will be pointed out. 

11. IONIC DISTRIBUTION 

Any theoretical calculation of physical properties meets a t  the very 
beginning the necessity for a series of arbitrary assumptions, because an 

2 Kirkwood (19) has presented a very careful analysis of the problem for the case of 
strong electrolytes and has suggested, in section IV of his paper, an alternative t o  
the method presented here for handling association. 
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idealized and simplified model must be chosen to represent the actual 
physical system under consideration. Inevitably, parameters with the 
dimensions of distance appear; within certain limits, we may ascribe to 
them the nature of molecular dimensions, but as a matter of fact, they 
represent the dimensions of a fictitious particle in a hypothetical medium, 
the two so chosen that  the idealized system will duplicate the properties 
of the real system when a given variable is changed. For the present dis- 
cussion, we shall use the conventional model: the ions are assumed to be 
uniformly charged spheres (charges &:e) of diameter a in a homogeneous 
medium which is completely described electrically by its macroscopic 
dielectric constant and hydrodynamically by its macroscopic viscosity. 
Interaction between solvent and solute is excluded; solvation, which may 
mean actual complex ion formation, or simply electrostatic dipole satura- 
tion, is absorbed in the assumption that  the size of the ion in solution may 
be larger than that  of the lattice ion. The dielectric constant is assumed 
to be a true constant, although the effective dielectric constant between 
two real ions a t  short distances is presumably much smaller than D, the 
macroscopic dielectric c o n ~ t a n t . ~  Furthermore, the ion is assumed to be 
rigid mechanically and also unpolarizable, so that  all forces of repulsion 
are approximated by a potential which becomes positively infinite a t  T = a. 
Electron rearrangement is completely neglected in this model, and quan- 
tized bonds are, of course, entirely excluded from discussion. The assump- 
tion of spherical symmetry of charge distribution in the model is also a 
special re~tr ic t ion.~ 

These and other recognized imperfections of the model described above 
may, in principle a t  least, be eliminated by more elaborate mathematical 
methods, but for the present we shall use the simple model. 

We consider then a solution containing N ions of charge +E and N ions 
of charge - E  in a total volume V. The contribution to  the free energy due 
to electrostatic forces is given by the equation 

J . . . e--BIkT(dV)2N (1) e-FlkT = V-2N 

where the total electrostatic potential energy may be written 

Very interesting and suggestive results are obtained by setting D = D(r) ,  where r 
is the distance between two ions. The function D(r)  is probably an S-function, 
which may be approximated by a step function: D ( r )  = 1, a 4 r 4 a + a'; D(r)  = 
na, a + a' 4 r < d ;  D(r)  = D, d < r < m, where d is a distance equal in order of 
magnitude t o  the distance from an ion at which a solvent dipole of strength p has an 
even chance of assuming a random orientation, i e . ,  where cp/rZD(r)kT = 1. 

Kirkwood (18) has discussed a model in which the ionic charge distribution is 
arbitrary, and has applied his results to  the case of zwitterions. 
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if U i j  represents the mutual energies of ions i and j. For the ith ion, we 
have as  its total potential energy 

E, = uil + ui2 + * *  ’ + ULi-1 + ui,i+l + + u i , 2 N  (3) 

Now many terms of Ei may be entirely negligible compared to kT, because 

uij = eiei/Drij (4) 

and T i j  has as its maximum value a distance of the order of P. In  fact, 
U i j  will converge to  zero much faster than l / r ,  because, if we anticipate 
somewhat, the electrostatic screening due to ions between i and j, when 
T i j  >> a, will lead to a potential 

$i = tie-Xr/Dr ( 5 )  

around the ith ion, thus multiplying the Coulomb l / r  potential by a nega- 
tive exponential. For practical purposes, we could approximate the sum 
(equation 3) very closely by neglecting all terms uij for which rij was 
greater than say six or a dozen times 1 / ~ .  Now in the remaining terms, we 
may expect to  find several relative orders of terms. If no particular ion 
j happened to be near (i.e., r = a) ion i in the configuration selected, many 
of the terms uij would be of equal magnitude, although smaller than kT. 
On the other hand, we might find one particular ion j = k, such that 
r i k  = a, in which case Uik would be much larger than all the other terms of 
E;. This term would then control the contribution of ion i to F .  Another 
case would be when two ions 1 and m were near i, so that (uil + uim) would 
make up the main contribution to  Ei. Even in the first case (many uij’s 
approximately equal), we should be able to select one term which was larger 
than the others, although perhaps only infinitesimally so. We are thus 
led to  seek a classification of the ions which will permit an ordering of their 
energies in sequences, such that the largest term (which may also be the 
leading term) of Ei can be selected. 

Let us consider a particular instantaneous configuration of the ions in 
the total volume V ,  which temporarily will be chosen so large that groups 
containing three ions a t  distances of the order of a will be negligibly rare. 
Let each positive ion be surrounded by a concentric sphere of radius a /2 ,  
and then let all the spheres expand a t  a uniform rate, until a distance of the 
order of V4 is reached. As soon as  the sphere for a given positive ion cuts 
the center of a negative ion, we shall count these two ions as a pair, pro- 
vided that  the negative ion has not already been counted a t  some smaller 
distance as the partner of some other positive ion. In this way, we are 
able to assign a unique partner to each positive ion, namely, that negative 
ion which is nearest to the central ion, provided that  the former ion is not 
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nearer to  some other positive ion than to  the reference positive ion. If 
the nearest ion has already been assigned to  a partner, then the next 
nearest is counted, and so on. We may define an  ion pair of this type as 
follows: a positive ion and a negative ion, the center of which lies in dr  a t  a 
distance r from the positive ion are counted as an ion pair, provided that 
no other unpaired negative ion lies within a sphere of radius r drawn around 
the positive ion (7). 

The probability G(r)dr for such a configuration is proportional to  
4~r*dr /V,  the ratio to  the total volume of the volume which is to contain 
the partner ion; to N ,  the total number of negative ions present; to the 
Boltzmann factor, exp (e2/DkT);  and to the probabilityf(r) that  an un- 
paired ion is not already in the sphere 4nr3/3. The chance that  another 
ion a t  x, a 6 x 6 r ,  should have been counted as the partner of the central 
ion is [ ( N -  1 ) / N ]  G(x)dz, and the probability that no such ion is anywhere 
in the sphere 4ar3/3 is 

f ( r )  = 1 - - lr G(x)dx 

giving the following integral equation for G(r) : 

where 

The solution of equation 7 is 

We note that 

I* G(r)dr = 1 

The above derivation contains the approximation that  the potential 
around the central ion is e2/Dr; in other words, the screening effects due to 
possible ions between the two ions of the pair, which would cause the inser- 
tion of a factor exp (- Kr), are neglected. This approximation is not serious 
for our present purpose, because the function will be used primarily to  
classify the ions into several groups, and the general character of G(r) for 
this purpose is not changed by inserting the correction factor. 
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As a function of r ,  G(r) may have two peaks. If we assume low concen- 

b = E2/aDkT > 2 
trations, and have 

(11) 

the first is an exponential peak a t  r = a and the second is a maximum a t  a 
distance 

p = +'T//2n~ (1 - 0 iYTi/29~ + . .  .) (12) 

which is in order of magnitude the distance between uniformly distributed 
particles. 

rxlO' 

FIG. 1. Distribution curves for c = 5, 10, 20, and 30 X 10-4, a = 5.57 X lo-*, 

Between r = a and r = p is a minimum which comes approximately a t  

D = 20, t = 25'C. 

the Bjerrum radius 
Q = e2/2DkT = p/2 (13) 

Up to r = @/a, the function G(r) approximates the Bjerrum distribution 
function; beyond r = @/2, G(r) resembles roughly the distribution curve 
for a pairwise selection of uncharged particles. 

An example of the distribution curve is given in figure 1, where D = 20, 
t = 25"C., a = 5.57 X lo-*, p = 27.8 X and c = 5,10,20, and 30 X 

If we consider only the lower concentrations, we find that  the ions 
present may be divided into several groups: those which h d  partners 
near r = a, those with partners near r = @/a, and those with partners 
near r = p .  (In view of the definition of G(r),  the fraction of all the posi- 
tive ions which fipd partners between rl and r2 is obviously 

Arrows mark the distance 1/x.  

i.e., the area under G(r) between r1 and rz; cf. equation 10.) The group 
for which r = @/2 will represent a small fraction of the total, because they 
correspond to a minimum probability; the ions in this group are ions in 
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transition from short to  long range pairs, through the probability barrier 
a t  r = p/2. 

The ions in the short range pairs are ions which are near together on 
account of Coulomb attraction. By far the largest term in their total 
potential energy is the contribution from their mutual interaction. Their 
net external field, as far as other ions are concerned, is essentially a dipole 
field, which corresponds to  a l / r z  energy. Compared to the l / r  energies 
of ion-ion interaction, we are led to neglect in first approximation the 
interaction of ions in such short range pairs with ions at large distances 
from either. In  other words, we count ions in short range pairs as  asso- 
ciated, as mas first suggested by Bjerrum (3), and assume them to act 
approximately like single particles of an ideal solute. If we assume that  
ions for which a 6 r 6 d are associated, where d is a distance5 of the order 
of several times a and has its upper limit p/2, then the fraction of solute 
associated is given by 

In the limit of zero concentration, we have 

1 - y 4aL lim- = - looo 
c-0 c 

ea’. r2 dr 

Now if we had a mass action equilibrium between free and associated ions 
of the type 

A+ + B ’ e A B  (17) 
the left side of equation 16 defines the reciprocal of the mass action constant 
K for equation 17, and the right side of equation 16 evaluates K-’ in terms 
of parameters characteristic of solvent and solute. 

The ions in the long range pairs (those whose partner is found a t  dis- 
tances of the order of p )  must be treated in a different way. Here the 
interaction with all the neighboring ions (except with those in short range 
pairs within the present approximation) rather than with merely the nearest 

As a matter of fact, the association cal- 
culated is not very sensitive to  the value of d on account of the exponential peak in 
G(r )  a t  r = a. For practical purposes, it is sufficient to  choose d equal to two or three 
times a; or, for the sake of uniformity with earlier work, to  take d = 8/2. Halpern’s 
objections (J. Chem. Physics 2, 85 (1934)) to  the latter choice are unfounded; the 

proper volume to  exclude as belonging to  ion pairs is ( 4 ~ / 3 )  r3G(r)dr, and the ratio 

of this to  V is always small in the range of concentration over which the equations 
derived from G(r )  apply. The “thermodynamic” objection is likewise groundless, 
because the free energy of a single ion pair has no more meaning than the temperature 
of a single molecule. 

6For a discussion of d, see reference 7. 

Ld 
CHEMICAL RIVIEWB, VOL. 17, NO. 1 
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ion of opposite charge must be taken into account. A simple calculation 
shows that  

2/pDkT << 1 (18) 

when the concentration is small, so that  the potential energy of a n  ion in 
this group with respect to the nearest otherwise unpaired ion is small 
compared to the energy of thermal motion. There will be in its potential 
energy many terms of the same order of magnitude all of which, however, 
are small. This situation suggests that a time average treatment be 
applied to the calculation of the mutual energy of ions in long range pairs, 
and we are naturally led to the Poisson-Boltzmann equation derived by 
Debye and Hiickel. Fluctuation terms are due to ions for which r = p/2 ;  
their effects are negligible a t  low concentrations (8). The ions for which 
T = a, and which would represent very serious fluctuation terms in any 
time average treatment, are handled separately by means of the association 
hypothesis. 

On the basis of the distribution function G(r ) ,  we have thus divided the 
ions in solution into three groups: short range pairs or associated ions, long 
range pairs or free ions, and ions in transition. The latter group will 
always represent a small fraction of the total a t  low concentrations, and 
for the sake of simplicity may be included with the free ions, which will 
then be defined as all ions whose distance to  the nearest unpaired ion of 
opposite sign is greater than d, a distance equal to several ionic diameters. 
Furthermore, we have seen that, according to  equation 16, the relative 
concentrations of free and bound ions satisfy the formal laws of dissocia- 
tion theory. Let us now calculate the conductance as a function of con- 
centration. The total current i for unit field between unit electrodes is 
given by the product of the number of conducting ions per unit volume 
times charge times mobility. If we assume that a fraction (1 - 7) of the 
total solute is associated and hence non-conducting for direct current, we 
have 

i = Fcy(v++ v-)/loo0 (19) 

where F = 96,494 coulombs, c = concentration in equivalents per liter, 
and v is mobility. The mobility of the free ions a t  finite concentrations 
is less than vo, the limiting mobility, on account of long range interionic 
effects, and it has been shown (24) that for low free ion concentrations, 

v = V O  - A 4  (20) 

Combining equations 19 and 20 and recalling the definition of equivalent 
conductance, A, we have 

A = ~ ( A O  - ~ V ' C Y )  (21) 
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where Q! is the Onsager coefficient and A0 is the limiting conductance. 
Equation 21 represents a combination of two effects which can change A 
with changing concentration; both the actual relative number of conducting 
particles, as well as their mobilities, are assumed to be functions of concen- 
tration. The equation thus combines the original ideas of Arrhenius with 
the modern notions of interionic forces. 

If we know A. and Q! and measure A as a function of c, equation 21 
permits us to determine y, the “degree of dissociation,” as a function of c. 
Formally, we can solve equation 21 for y by the usual algebraic methods, 
but a slight transformation gives a much more convenient form. If we 
define a new variable z by the relation 

z = aAT’” 6 (28) 

A = yAoF(z)  (23) 

(24) 
(25) 

The function F ( z )  has been calculated (11) and tabulated for a series of 
values 0 6 z 6 0.209. Consequently, the solution of equation 21 for y, 
given a, A,, A, and c can be carried out very simply. But obtaining 
numerical values for y does not furnish a test of the equation; rather i t  is 
necessary to find some other relationship which y must satisfy, and then 
to make the test by means of the second equation. The further connection 
between y and concentration is suggested by equation 16. If we assume 
an equilibrium between long and short range pairs, controlled by the 
balance between Coulomb forces and thermal motion, then we have the 
mass action equation 

(26) 

we find 

where 
F ( z )  = g cos2 4 cos-l(- 3 d 3  z/2) 

= 1 - z(1 - z ( 1  - z ( 1  - ...)- 1/2)-1/2)-1/2 

cy”f/(l - y) = K 
where K-’ is given by equation 16. is included in equation 26 
to account for the effect of long range free ion-free ion interaction on the 
thermodynamic potentials involved in the derivation of equation 26. 
Following Debye and Huckel, we may set 

The term 

-In? = 2p’dG (27) 
because free ions, defined as those for most of which T >> d, satisfy the 
Debye-Huckel approximation 

e\L/kT << 1 (28) 
necessary for the simplification of the Poisson-Boltzmann equation to a 
linear differential equation, and equation 27 is the direct result of this step. 

Equations 21,26, and 27 together then give conductance as a function of 
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concentration, and aside from universal constants, two arbitrary constants, 
AO and K appear. It should therefore be possible to rearrange the equa- 
tions so that conductance data can be plotted in such a way that a straight 
line is obtained, provided all our assumptions are correct. This form is 
readily found; as a matter of fact, i t  is simply the function used by Kraus 
and Bray (20) twenty years ago, modified to take into account long range 
interionic effects. By rearrangement of the fundamental equations, we 
obtain 

so that F / A  plotted against cAf”/F gives a straight line with slope 1/KAi 
and intercept l/Ao. In figure 2 are given some examples for salts in liquid 
ammonia (17) (D = 22) a t  -33”C., and in figure 3 for salts in ethylene 

FIG. 2. Conductance function in liquid ammonia a t  -33°C. 

chloride (6) (D = 10.23) a t  25°C. Over a wide range of concentration, the 
plot is linear as required by equation 29.6 

We may reverse the procedure and calculate the conductance curve, 
once values of the constants are obtained. In figure 4 are given calculated 
A - 4 ;  curves for a variety of conducting systems (12) covering a wide rmge 
of all the variables. The solid curves are calculated; the circles represent 

6 The procedure for making the plot, given experimental A - c values is as follows. 
First, a free-hand extrapolation of a A - 4; curve or of a (A + a &) - c curve is made, 
in order to  obtain a tentative value Ab for the limiting conductance. Using this 
value, z is computed for each point, and the corresponding F is interpolated from the 
table (reference 6) or calculated by equation 24 or 25. Then y is computed from 
equation 23, and with this value of y, equation 27 is used to  obtain fz. Now both f” 
and F will be somewhat in error if A6 does not equal the true value of the limiting 
conductance, but these errors do not seriously affect the extrapolation for Ao. Then 
F / A  is plotted against cAfz /F,  and the line constants are determined. If the value of 
A. obtained from the intercept is more than a per cent or so different from A;, the 
calculation is repeated to  obtain a second approximation, because the slope of the 
curve is affected by the A0 value used in the computation. 
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observed points. It should be noted that in principle two points are suffi- 
cient to determine the entire conductance curve, because only two arbitrary 
constants are involved. All the curves approach A0 along the Onsager 
tangent; in solvents of higher dielectric constant, the deviation from the 
limiting law 

is small a t  low but accessible concentrations, because y is nearly unity. 
In solvents of dielectric constant less than about 30, an inflection point 
appears a t  a concentration 

A = A0 - az/E (30) 

~i,,! = 0.2165 K/ft,,, (3 1) 

near which the curve is, of course, approximately linear. It is the appear- 
ance of this inflection point which has led to the statement appearing 
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FIG. 3 FIG. 4 
FIQ. 3. Conductance function in ethylene chloride a t  25°C. 

FIG. 4. Calculated and observed conductance values. Curve I, "IOa in water: curve 
11, NaBrOs in ammonia; curve 111, NaI in amyl alcohol; curve IV, (CsHll)rN.N03 
in ethylene chloride; curve V, KNHz in ammonia. 

frequently in the literature that, in non-aqueous solvents, conductance 
curves approach linearity on a 6 scale, but with a slope much greater 
than a. 

We must inquire how the constants AO and K vary with more funda- 
mental parameters. In first approximation, A0 depends primarily on the 
viscosity, 7, of the solvent, as required by Walden's application of Stokes' 
law, 

but it is probable that this product also depends on temperature, viscosity, 
and dipole moment of the solvent (4, 26). Also, in first approximation, 

Aoq = constant (32) 
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K varies with ion size, dielectric constant, and temperature (13) in accord- 
ance with the following equation: 

K-‘ = E 1000 ( 2 ) 3 [ P ( b )  DkT - P(c2/DkTd)] 

where 

2 P(x )  = Ei(x)  - - e=(; + 3 + 1) 
X 

(33) 

(34) 

For example, figure 5 shows the variation of the dissociation constant 
of tetraisoamylammonium nitrate in dioxane-water mixtures (21) over the 
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FIG. 6 
FIG. 5 .  Calculated and observed dissociation constants for tetraisoamylam- 

monium nitrate in dioxane-water mixtures. 
FIG. 6. Test of the triple ion conductance function 

range D = 2.38 to D = 38. The circles are experimental values; the curve 
is calculated according to  equation 33 with d = p/2 and a = 6.40 X 
lo-* cm. 

At low concentrations, therefore, we may, with a reasonable degree of 
certainty, describe and predict electrolytic properties. The next question 
deals, of course, with higher concentrations. It must be pointed out 
immediately that the meaning of the phrase “at low concentrations” 
depends on the solvent. For example, the behavior of 0.001 N aqueous 
solutions is fairly well understood, but a t  the same concentration in ben- 
zene, electrolytic properties are far too complicated for analysis with any 
of our present methods. 
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The applicability of the hypothesis made above-namely, a combina- 
tion of the effects of long range interionic forces with the effects due to  
ionic association-depends for its success, obviously enough, on the pres- 
ence of free ions and associated pairs in the solution. Now as concentra- 
tion is increased, we find a shift of the distribution curve G(r),  as is shown 
in figure 1, which eventually eliminates the long range maximum. At a 
concentration given by 

(35) ccrit = 3.2 X 10-'D3 a t  25°C. 

the maximum of G(r),  the minimum and the included inflection point 
coincide. Above this concentration, there is no relative maximum prob- 
ability for the free ions; the shorter the pairwise distances, the greater the 
probability. As a matter of fact, the simple conductance equation (equa- 
tion 21) is found to fail a t  concentrations of the order of that given in 
equation 35; a t  higher concentrations, A (observed) is always greater than 
A calculated from equation 21. Frequently the observed curves show a 
minimum in conductance, beyond which A increases with c, while equation 
21 calls for a decrease of A with increasing c as long as the equation has any 
physical meaning (Le., as long as 32/3z/2 ,< 1). 

It is therefore necessary to find some additional process which is taking 
place in the solution, in order to  account for the positive deviations from 
equation 21. A suggestion regarding this is found in the restrictions 
involved in deriving the distribution function. We assumed that  V was 
so large that short range three-ion configurations were negligibly rare, so 
that  no l/r2 terms in ionic energies would be comparable with the l /r  
terms. At concentrations greater than that  given in equation 35, many 
ions will be near short range pairs, because the distribution curve calls for a 
large fraction of the solute existing as short range pairs (cf. figure 1). The 
potential energy of a single ion in contact with a n  ion pair is, in the ideal 
case, one half the potential energy of the ion pair, and may therefore also 
be large compared to  iiT. Consequently, short range three-ion configura- 
tions will be stable to thermal impact, and we must re-define the distribu- 
tion, in order to take these groups into account. Let us define a free ion 
as one which is relatively far from either another free ion or from a short 
range ion pair. Then, by an  analysis entirely analogous to the one which 
led to  G(r) ,  we find that  short range triple ion groups have a relative maxi- 
mum in probability when the dielectric constant becomes small or the 
concentration large. Furthermore, if we consider part of the solute to 
exist as triple ions, we are removing a part of the solute from the ion-ion 
eq2uilibrium (17), and the net result is to  remove some area from the G(r) 
curve near r = @/2, which restores the long range maximum. We now 
have five individual species of solute particles: (+), (-), (+ -), 
(+ - + > l  and (- + -1. 
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It is easy to compute the effect of the presence of triple ions on the 
conductance (14). These groups have a net charge of & e  and hence are 
conducting. Also the equilibrium between triple ions, ion pairs, and free 
ions obeys the formal laws of dissociation theory; the proof is analogous to 
that  leading to equation 16. If, for the sake of simplicity, we assume that 
(+ - +) and (- + -) groups are equally probable,’ we find the con- 
ductance equation 

Here Xo is the limiting conductance of the hypothetical salt (+ - +) 
(- + -). The function (14) g(c) approximates the long range interionic 
effects; in it, total ion concentration is set equal to  cA/Ao and cross terms 
in the mobility correction, caused by the difference between AD and XO, are 
neglected (25). According to equation 36, we should obtain a straight line 
when A l / c g ( c )  is plotted against c(1 - A/&). In  figure 6 are shown the 
corresponding curves for tetraisoamylammonium nitrate in dioxane-water 
mixtures (14) over the appropriate ranges of concentration. It will be 
seen that all the plots are linear. The line constants evaluate Adz and 
b l / E / k 3  as intercept and slope. Now the triple ion hypothesis brings in 
three new arbitrary constants. By assuming (- + -) and (+ - +) 
groups equally probable, we reduce the number to two, XO and k3. We 
may estimate AD, and thus determine k3, or else make conductance measure- 
ments at a t  least two temperatures, which will then determine the two 
constants (2). 

In the same way that K was expressed as a function of D,  T, and a, we find 
for k3 

2?r~a3 
= -I@) 1000 (37) 

The function I(b) has been tabulated for a series of b-values. When the 
parameter b is large compared to unity, we may use the asymptotic ex- 
pansion (10). 

I @ )  - 32eb12/3b2 (38) 

Equation 37 may be tested by plotting observed values of log ka against D 
and comparing with a log k3-D curve calculated from equation 37, using a 
fixed U-value. In  figure 7, we have such a plot for the data of figure 6, 

7 An inequality in probability causes a shift of the minimum to higher concentra- 
tions, other variables remaining constant. In  the limiting case where one triple 
species does not form at all, the conductance curve approaches asymptotically a 
constant value, provided higher association does not produce a minimum. 
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with a = 9.0 X lo-* cm. The agreement is satisfactory over a wide range 
of the variables. 

The development sketched above serves to account quantitatively for 
conductance curves up to concentrations of the order of that  corresponding 
to the minimum in conductance, %+-hen a minimum appears, i.e., in solvents 
of dielectric constant less than about 10. For solvents of higher dielectric 
constant, triple ion energies are fairly small, and this type of interactions 
cannot be treated by association theory, just as short range pairwise inter- 
action cannot be so treated for strong electrolytes in solvents of high 
dielectric constant; and for the same reason, the energy is only of the same 
order as kT. The general problem of concentrated solutions of electrolytes 
is as yet practically untouched. 
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FIG. 7. Calculated and observed triple ion dissociation constants 

In solvents of very low dielectric constant, association increases very 
rapidly with increasing concentration, if we base our opinion on molecular 
weight (1, 23) and dielectric constant measurements (22). The next 
simplest association after the triple ion is the quadrupole type, and i t  is 
possible to set up a system of equations which describes the limiting be- 
havior of a pair-pair association in solvents of low dielectric constant (9). 
The agreement between theory and experiment is fairly satisfactory (16)) 
but not many data are yet available and the theory is still in the pro- 
cess of development. The greatest practical difficulty in the treatment of 
even moderately concentrated electrolytic solutions in solvents of low 
dielectric constant lies in the fact that, with increasing order of association, 
the excess potential energy of the last ion added to a cluster becomes less 
and less. Consequently, the binding energy decreases with increasing 

* The three-ion interaction in solvents of higher dielectric constant could probably 
be handled best by starting with the equations of motion (Fuoss: Physik. Z. 36, 
59 (1934)). 
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order of association, and, furthermore, i t  becomes difficult to separate 
individual orders, because their relative energies, and hence probabilities, 
are nearly equal. We can only draw the conclusion that  association will 
increase very rapidly once the triple ion stage is passed; this conclusion is 
confirmed by experimental data on conductance (15), freezing points 
(1, 23), and dielectric constant (22). It is, however, quite possible that  
the conductance mechanism in concentrated solutions in solvents of low 
dielectric constant is different from the simple migration type characteristic 
for low concentrations, and an exchange of ions between neighboring 
clusters, corresponding to  a rapid increase of effective mobility with 
increasing concentration, might easily be involved. Again we are faced 
with a lack of experimental data on which to base deductions. It is in- 
teresting to note that the high concentration ends of conductance curves 
for a given salt in solvents of low dielectric constant all tend to converge 
to  the same region, which is presumably the conductance of the fused salt 
a t  the experimental temperature. This fact suggests that the best ap- 
proach to the problem might be through the theory of the conductance in 
fused salts, another field which has been investigated in only a preliminary 
way. 
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